Slab on Grade Analysis

Organization:

Project Name: **EXAMPLE 1 ENGLISH UNITS**

Job #: Design by:

Date: 6/20/2019

Slab Geometry

Slab Thickess, t	5.00 in
Min. Thickess, t(min)	4.50 in
Concrete Str, f'c	2500 psi
Vert. Subgrade Modulus	75 pci
Modulus of Rupture, MR	450.00 psi
Modulus of Elasticity, Ec	2850000 psi
Poisson's Ratio	0.15
Radius of Stiffness, Lr	25.23 in

Uniform Live Load = 50 psf Ctitical Aisle Width = 4.64' Conc. Point Load = 1500 lb Post 2 in Sand 15 mill V.B. 6 in Gravel

Point Load

			Actual, psi	Allow, psi
Point Load Type	Post	Flexural Stress, Fb	71.54	225.00
Conc. Unit Weight, wc	145 pcf	Bearing Stress, Fp	15.00	1890.00
Reinforcing Yield, fy	40000 psi	Punching Shear Stress, Fv	5.00	121.50
Concentrated Point Load, P	1500.00 lb	Load Transf. Dowels @ Joint, Fd	946.66	2708.33
Contact Area, Ac	100.00 in^2			
Factor of Safety, FS	2.00	Minimum required slab thickness		in
Dowel Bar Dia, db	0.750 in	Single Interior Load		2.50
Dowel Bar Spacing, s	12.000 in	Single Corner Load		1.50
Const. Joint Width, z	0.3300 in	Single Edge Load (circular area)		3.75
Joint Spacing, L	12.000 ft	Single Edge Load (semi-circular area)		4.25
Temperature Range, deltaT	40.00 deg			
Increase for 2nd Load, i	40.00 deg			

Wall Load			Allow. Wall	Min. req. slab
Distributed Wall Load, P	300.00 lb/ft	Near Center or Keyed Joints, Pc	Load, lb/ft 451.05	thickness, in 3.75
		Near Free Edge, Pe	349.76	4.50

Uniform Load			Stat. Unif. Dist. Live Loads, psf	•
Uniform Live Load, wLL	50.00 psf	Per Reference #1	665.56	-0.75
Factor of Safety, FS	2.000	Per Reference #2	535.92	-0.50

Reinforcement

Steel Yield Str, F	60.0 ksi	and a c
Rebar Sizes	US	.⊑ 6M @ 8 in
Bar Size	6M	
Clear Cover	2.00 in	
Bar Spacing	8.00 in	Ti N
As Required	0.60 in^2/ft	
As Provided	0.07 in^2/ft	

References:

- "Concrete Floor Slabs on Grade Subjected to Heavy Loads"
 Army Technical Manual TM 5-809-12, Air Force Manual AFM 88-3, Chapter 15 (1987)
- 2. "Slab Thickness Design for Industrial Concrete Floors on Grade" (IS195.01D) by Robert G. Packard (Portland Cement Association, 1976)
- 3. "Design of Slabs-on-Ground" ACI 360R-06 by American Concrete Institute, 2006
- 4. "Concrete Floors on Ground"- 2nd Ed., by Portland Cement Association, 1983
- 5. "Designing Floor Slabs on Grade"-2nd Ed., by Ringo & Anderson, 1992
- 6. ACI 318-14, American Concrete Institute, 2014
- 7. 2015 International Building Code, ICC, 2015
- 8. Slab on Grade Software v1.0.0 by SoilStructure.com